Goto

Collaborating Authors

 Puerto Rico


Enhancing Robustness in Deep Reinforcement Learning: A Lyapunov Exponent Approach

Neural Information Processing Systems

Deep reinforcement learning agents achieve state-of-the-art performance in a wide range of simulated control tasks. However, successful applications to realworld problems remain limited. One reason for this dichotomy is because the learnt policies are not robust to observation noise or adversarial attacks. In this paper, we investigate the robustness of deep RL policies to a single small state perturbation in deterministic continuous control tasks. We demonstrate that RL policies can be deterministically chaotic, as small perturbations to the system state have a large impact on subsequent state and reward trajectories. This unstable non-linear behaviour has two consequences: first, inaccuracies in sensor readings, or adversarial attacks, can cause significant performance degradation; second, even policies that show robust performance in terms of rewards may have unpredictable behaviour in practice. These two facets of chaos in RL policies drastically restrict the application of deep RL to real-world problems. To address this issue, we propose an improvement on the successful Dreamer V3 architecture, implementing Maximal Lyapunov Exponent regularisation. This new approach reduces the chaotic state dynamics, rendering the learnt policies more resilient to sensor noise or adversarial attacks and thereby improving the suitability of deep reinforcement learning for real-world applications.


Latent Functional Maps: a spectral framework for representation alignment

Neural Information Processing Systems

Neural models learn data representations that lie on low-dimensional manifolds, yet modeling the relation between these representational spaces is an ongoing challenge. By integrating spectral geometry principles into neural modeling, we show that this problem can be better addressed in the functional domain, mitigating complexity, while enhancing interpretability and performances on downstream tasks. To this end, we introduce a multi-purpose framework to the representation learning community, which allows to: (i) compare different spaces in an interpretable way and measure their intrinsic similarity; (ii) find correspondences between them, both in unsupervised and weakly supervised settings, and (iii) to effectively transfer representations between distinct spaces. We validate our framework on various applications, ranging from stitching to retrieval tasks, and on multiple modalities, demonstrating that Latent Functional Maps can serve as a swiss-army knife for representation alignment.




Fighting Copycat Agents in Behavioral Cloning from Observation Histories, Trevor Darrell

Neural Information Processing Systems

Imitation learning trains policies to map from input observations to the actions that an expert would choose. In this setting, distribution shift frequently exacerbates the effect of misattributing expert actions to nuisance correlates among the observed variables. We observe that a common instance of this causal confusion occurs in partially observed settings when expert actions are strongly correlated over time: the imitator learns to cheat by predicting the expert's previous action, rather than the next action. To combat this "copycat problem", we propose an adversarial approach to learn a feature representation that removes excess information about the previous expert action nuisance correlate, while retaining the information necessary to predict the next action. In our experiments, our approach improves performance significantly across a variety of partially observed imitation learning tasks.




3D-IntPhys: Towards More Generalized 3D-grounded Visual Intuitive Physics under Challenging Scenes Antonio Torralba 2 Joshua Tenenbaum 2 Daniel Yamins

Neural Information Processing Systems

Given a visual scene, humans have strong intuitions about how a scene can evolve over time under given actions. The intuition, often termed visual intuitive physics, is a critical ability that allows us to make effective plans to manipulate the scene to achieve desired outcomes without relying on extensive trial and error. In this paper, we present a framework capable of learning 3D-grounded visual intuitive physics models from videos of complex scenes. Our method is composed of a conditional Neural Radiance Field (NeRF)-style visual frontend and a 3D point-based dynamics prediction backend, using which we can impose strong relational and structural inductive bias to capture the structure of the underlying environment. Unlike existing intuitive point-based dynamics works that rely on the supervision of dense point trajectory from simulators, we relax the requirements and only assume access to multi-view RGB images and (imperfect) instance masks acquired using color prior.